Introduction to Fourier Analysis

Intro. Biomedical Imaging and Image Analysis

September 3, 2008
Motivation:

Understand complex signals (functions) as a function (linear combination) of simpler ones.

\[f(x) = \cdots + c_0 \phi_0(x) + c_1 \phi_1(x) + c_2 \phi_2(x) + \cdots \]

We will look at
Motivation:

Understand complex signals (functions) as a function (linear combination) of simpler ones.

\[f(x) = \cdots + c_0 \phi_0(x) + c_1 \phi_1(x) + c_2 \phi_2(x) + \cdots \]

We will look at

- continuous signals (functions)
Motivation:

Understand complex signals (functions) as a function (linear combination) of simpler ones.

\[f(x) = \cdots + c_0 \phi_0(x) + c_1 \phi_1(x) + c_2 \phi_2(x) + \cdots \]

We will look at

- continuous signals (functions)
- discrete signals
Motivation:

Understand complex signals (functions) as a function (linear combination) of simpler ones.

\[f(x) = \cdots + c_0 \phi_0(x) + c_1 \phi_1(x) + c_2 \phi_2(x) + \cdots \]

We will look at

- continuous signals (functions)
- discrete signals
- 1D, 2D, 3D.
For discrete signals

-Finite dimensional case: \((N \text{ samples}) \)
 \[s[p] = \sum_{k=0}^{N-1} c_k \phi_k[p] \]

-Infinite dimensional case (infinite sequences):
 \[s[p] = \sum_{k=-\infty}^{\infty} c_k \phi_k[p]. \]

-For continuous signals
 \[\sum_{k=-\infty}^{\infty} c_k \phi_k(x) \]
 \[F(\omega) = \int_{-\infty}^{\infty} f(x) \phi_\omega(x) \]

Why are we doing this?
-Many imaging problems easier to understand if we choose building blocks (\(\phi_k \)) carefully.
-Computing the expansion coefficients (\(c_k \), or \(F(\omega) \)) above is key, but often easy.
For discrete signals

- Finite dimensional case: \((N\) samples)
 \[s[p] = \sum_{k=0}^{N-1} c_k \phi_k[p] \]
For discrete signals

- **Finite dimensional case:** (\(N\) samples)
 \[s[p] = \sum_{k=0}^{N-1} c_k \phi_k[p]\]

- **Infinite dimensional case** (infinite sequences):
 \[s[p] = \sum_{k=-\infty}^{\infty} c_k \phi_k[p].\]
For discrete signals

- Finite dimensional case: \((N\) samples\)
 \[s[p] = \sum_{k=0}^{N-1} c_k \phi_k[p]\]
- Infinite dimensional case (infinite sequences):
 \[s[p] = \sum_{k=-\infty}^{\infty} c_k \phi_k[p].\]

For continuous signals

- Series expansion \(f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k(x)\)
For discrete signals

- Finite dimensional case: \((N\) samples\)
 \[s[p] = \sum_{k=0}^{N-1} c_k \phi_k[p] \]

- Infinite dimensional case (infinite sequences):
 \[s[p] = \sum_{k=-\infty}^{\infty} c_k \phi_k[p]. \]

For continuous signals

- Series expansion \(f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k(x)\)
- Transform: \(f(x) = \int_{-\infty}^{\infty} F(\omega)\phi_\omega(x).\)
For discrete signals

- Finite dimensional case: \((N\) samples) \[s[p] = \sum_{k=0}^{N-1} c_k \phi_k[p] \]
- Infinite dimensional case (infinite sequences): \[s[p] = \sum_{k=-\infty}^{\infty} c_k \phi_k[p] \].

For continuous signals

- Series expansion \(f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k(x) \)
- Transform: \(f(x) = \int_{-\infty}^{\infty} F(\omega) \phi_\omega(x) \).

Why are we doing this?

- Many imaging problems easier to understand if we choose building blocks (\(\phi_k\)) carefully.
- Computing the expansion coefficients (\(c_k\), or \(F(\omega)\) above) is key, but often easy.
For discrete signals

- **Finite dimensional case:** \((N \text{ samples}) \)
 \[s[p] = \sum_{k=0}^{N-1} c_k \phi_k[p] \]

- **Infinite dimensional case (infinite sequences):**
 \[s[p] = \sum_{k=-\infty}^{\infty} c_k \phi_k[p]. \]

For continuous signals

- **Series expansion**
 \[f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k(x) \]

- **Transform:**
 \[f(x) = \int_{-\infty}^{\infty} F(\omega) \phi_\omega(x). \]

Why are we doing this?

- Many imaging problems easier to understand if we choose building blocks \((\phi_k)\) carefully.
For discrete signals

- Finite dimensional case: \((N\) samples\)
 \[s[p] = \sum_{k=0}^{N-1} c_k \phi_k[p] \]
- Infinite dimensional case (infinite sequences):
 \[s[p] = \sum_{k=-\infty}^{\infty} c_k \phi_k[p]. \]

For continuous signals

- Series expansion \(f(x) = \sum_{k=-\infty}^{\infty} c_k \phi_k(x) \)
- Transform: \(f(x) = \int_{-\infty}^{\infty} F(\omega) \phi_\omega(x). \)

Why are we doing this?

- Many imaging problems easier to understand if we choose building blocks \((\phi_k)\) carefully.
- Computing the expansion coefficients \((c_k, \text{ or } F(\omega)\) above) is key, but often easy.
Orthonormal expansions

Basic idea

Relate the problem of finding these approximations to solving $Ax = b$.

Now x expansion coefficients, b is our image, and $A = [\phi_1, \phi_2, \cdots]$

When columns of A are orthonormal, easy: $A^*A = I$ and therefore $x = A^Tb$.

In other notation

$b[p] = \sum_k x_k A_{p,k}$ or

$s[p] = \sum_k c_k \phi_k[p]$

c_k loosely termed Fourier coefficients.
Orthonormal expansions

Basic idea

Relate the problem of finding these approximations to solving $Ax = b$.

Now x expansion coefficients, b is our image, and $A = [\phi_1, \phi_2, \cdots]$.

When columns of A are orthonormal, easy: $A^*A = I$ and therefore $x = A^Tb$.

In other notation

$b[p] = \sum_k x_k A_{p,k}$ or $s[p] = \sum_k c_k \phi_k[p]$.

c_k loosely termed Fourier coefficients.
Orthonormal expansions

Basic idea

▶ Relate the problem of finding these approximations to solving $Ax = b$.
Orthonormal expansions

Basic idea

- Relate the problem of finding these approximations to solving $A\mathbf{x} = \mathbf{b}$.
- Now \mathbf{x} expansion coefficients, \mathbf{b} is our image, and

$$A = [\phi_1, \phi_2, \cdots]$$
Orthonormal expansions

Basic idea

- Relate the problem of finding these approximations to solving $Ax = b$.
- Now x expansion coefficients, b is our image, and

$$A = [\phi_1, \phi_2, \cdots]$$

- When columns of A are orthonormal, easy: $A^*A = I$ and therefore $x = A^Tb$.

Orthonormal expansions

Basic idea

- Relate the problem of finding these approximations to solving $A\mathbf{x} = \mathbf{b}$.
- Now \mathbf{x} expansion coefficients, \mathbf{b} is our image, and

$$A = [\phi_1, \phi_2, \cdots]$$

- When columns of A are orthonormal, easy: $A^*A = I$ and therefore $\mathbf{x} = A^T \mathbf{b}$.

In other notation

- $b[p] = \sum_k x_k A_{p,k}$ or
- $s[p] = \sum_k c_k \phi_k[p]$
Orthonormal expansions

Basic idea

- Relate the problem of finding these approximations to solving $Ax = b$.
- Now x expansion coefficients, b is our image, and

$$A = [\phi_1, \phi_2, \cdots]$$

- When columns of A are orthonormal, easy: $A^*A = I$ and therefore $x = A^Tb$.

In other notation

- $b[p] = \sum_k x_k A_{p,k}$ or
- $s[p] = \sum_k c_k \phi_k[p]$
- c_k loosely termed Fourier coefficients.
Discrete Fourier Transform (DFT)

Purpose
Representing finite signals of length \(N\) (\(s[n], n = 0, \ldots, N-1\)) as a linear combination of complex sinusoids.

\[
\phi_k[n] = e^{-j2\pi kn/N} = \cos(2\pi kn/N) + j\sin(2\pi kn/N)
\]

Fact:
\[
\langle \phi_k, \phi_l \rangle = \sum_{n=0}^{N-1} \phi_k^* [n] \phi_l [n] = 0 \text{ if } k \neq l \text{ and } \langle \phi_k, \phi_k \rangle = N
\]
Discrete Fourier Transform (DFT)

Purpose

Representing finite signals of length N
($s[n], n = 0, \cdots, N - 1$) as a linear combination of
complex sinusoids.

$$\phi_k[n] = e^{-j2\pi kn/N} = \cos(2\pi kn/N) + j \sin(2\pi kn/N)$$
Discrete Fourier Transform (DFT)

Purpose

Representing finite signals of length N ($s[n], n = 0, \cdots, N - 1$) as a linear combination of complex sinusoids.

$$\phi_k[n] = e^{-j2\pi kn/N} = \cos(2\pi kn/N) + j \sin(2\pi kn/N)$$

Fact:

$$\langle \phi_k, \phi_l \rangle = \sum_{n=0}^{N-1} \phi_k^*[n] \phi_l[n] = 0 \text{ if } k \neq l \text{ and } \langle \phi_k, \phi_k \rangle = N$$
Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT)

\[s[n] = \sum_{k=0}^{N-1} c[k] \phi_k[n] \]

\[c[k] = \sum_{n=0}^{N-1} s[n] \phi_k^*[n] \]

In matrix notation

\[A = [\phi_0, \phi_1, \ldots, \phi_{N-1}] \]

Therefore solving \(1/N A c = s \) is simply \(c = A^* s \).

Use "fft", and "ifft" commands in Matlab.
Discrete Fourier Transform (DFT)

Representation
Discrete Fourier Transform (DFT)

Representation

\[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \] with

Discrete Fourier Transform (DFT)

\[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \] with

Declaration

\[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \] with

Declaration

\[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \] with

Declaration

\[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \] with

Declaration

\[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \] with
Discrete Fourier Transform (DFT)

Representation

\[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \quad \text{with} \]
\[c[k] = \sum_{n=0}^{N-1} s[n] \phi_k^*[n] \]
Discrete Fourier Transform (DFT)

Representation

- \(s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \) with
- \(c[k] = \sum_{n=0}^{N-1} s[n] \phi^*_k[n] \)

In matrix notation

\[
A = [\phi_0, \phi_1, \cdots, \phi_{N-1}]
\]

Therefore solving \(\frac{1}{N} A c = s \) is simply \(c = A^* s \).

Use “fft”, and “ifft” commands in Matlab.
Discrete Fourier Transform (DFT)

Representation

- \(s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \) with
- \(c[k] = \sum_{n=0}^{N-1} s[n] \phi_k^*[n] \)

In matrix notation

- \(A = [\phi_0, \phi_1, \ldots, \phi_{N-1}] \)
Discrete Fourier Transform (DFT)

Representation

- \(s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \) with
- \(c[k] = \sum_{n=0}^{N-1} s[n] \phi_k^*[n] \)

In matrix notation

- \(A = [\phi_0, \phi_1, \cdots, \phi_{N-1}] \)
- Therefore solving \(\frac{1}{N} A c = s \) is simply \(c = A^* s \).
Discrete Fourier Transform (DFT)

Representation

\[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \quad \text{with} \]
\[c[k] = \sum_{n=0}^{N-1} s[n] \phi_k^*[n] \]

In matrix notation

\[A = [\phi_0, \phi_1, \cdots, \phi_{N-1}] \]

\[\text{Therefore solving } \frac{1}{N} A c = s \text{ is simply } c = A^* s. \]

\[\text{Use } \texttt{"fft"}, \text{ and } \texttt{"ifft"} \text{ commands in Matlab.} \]
Notes About Notation

The coefficients $c[k]$ of the expansion $s[n] = \sum_{k=0}^{N-1} c[k] \varphi[k][n]$ are called the Discrete Fourier Transform of the data $s[n]$. The coefficients are often written as $\hat{s}[k]$, or $S[k]$, as opposed to $c[k]$ to indicate that these are the Fourier Transform of the signal $s[n]$.
The coefficients $c[k]$ of the expansion
\[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \] are called the Discrete Fourier Transform of the data $s[n]$.

Notes About Notation

- The coefficients $c[k]$ of the expansion
 \[s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n] \] are called the Discrete Fourier Transform of the data $s[n]$.

- The coefficients are often written as $\hat{s}[k]$, or $S[k]$, as opposed to $c[k]$ to indicate that these are the Fourier Transform of the signal $s[n]$.

Notes About Notation

- The coefficients $c[k]$ of the expansion $s[n] = \frac{1}{N} \sum_{k=0}^{N-1} c[k] \phi_k[n]$ are called the Discrete Fourier Transform of the data $s[n]$.

- The coefficients are often written as $\hat{s}[k]$, or $S[k]$, as opposed to $c[k]$ to indicate that these are the Fourier Transform of the signal $s[n]$.
In 2D:

All of the above for 1D finite dimensional signals.
In 2D:

All of the above for 1D finite dimensional signals.

Perform decomposition column by column, then row by row, or vice versa.
In 2D:

All of the above for 1D finite dimensional signals.

Perform decomposition column by column, then row by row, or vice versa.

\[
s[m, n] = \frac{1}{M} \frac{1}{N} \sum_{k_y=0}^{M-1} \sum_{k_x=0}^{N-1} c[k_x, k_y] e^{j2\pi k_y m/M} e^{j2\pi k_x n/N}
\]
DFT example

Image

DFT

DFT example
DFT example

Explain image

As linear combination of basis vectors

The so called DFT are the coefficients of the expansion.
Convolution

Let s and h be two vectors of length N. Their convolution is defined as

$$(s * h)[n] = \sum_{k=0}^{N-1} s[k]h[n - k]$$

What happens when $n - k$ is outside of $[0, \ldots, N - 1]$?

Solution: interpret these signals as being periodic:

$$(s * h)[n] = \sum_{k=0}^{N-1} s[k]h[n - k \mod N]$$
Some Useful Properties

Convolution:

Let \(v[n] = (s * h)[n] \)

Then \(\hat{v}[k] = \hat{s}[k] \hat{h}[k] \).

Parseval's formula:

\[
\sum_{n=0}^{N-1} f[n] g[n] = \frac{1}{N} \sum_{k=0}^{N-1} \hat{f}[k] \hat{g}[k]
\]

Energy conservation: Plancherel formula:

\[
\|s\|_2^2 = \sum_{n=0}^{N-1} |s[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |\hat{s}[k]|^2 = \|\hat{s}\|_2^2.
\]
Some Useful Properties

Convolution:
Let
\[v[n] = (s * h)[n] \]
Then \(\hat{v}[k] = \hat{s}[k]\hat{h}[k] \).
Some Useful Properties

Convolution:
Let

\[v[n] = (s * h)[n] \]

Then \(\hat{v}[k] = \hat{s}[k]\hat{h}[k] \).

Parseval’s formula:

\[
\sum_{n=0}^{N-1} f^*[n]g[n] = \frac{1}{N} \sum_{k=0}^{N-1} \hat{f}^*[k]\hat{g}[k]
\]
Some Useful Properties

Convolution:
Let

\[v[n] = (s * h)[n] \]

Then \(\hat{v}[k] = \hat{s}[k] \hat{h}[k] \).

Parseval’s formula:

\[
\frac{1}{N} \sum_{k=0}^{N-1} \hat{f}^*[k] \hat{g}[k] = \sum_{n=0}^{N-1} f^*[n] g[n]
\]

Energy conservation: Plancherel formula:

\[
\|s\|^2 = \sum_{n=0}^{N-1} |s[n]|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |\hat{s}[k]|^2 = \frac{1}{N} \|\hat{s}\|^2.
\]
Fourier Series

Goal
Decompose "nice" periodic continuous functions as sums of complex valued sinusoids.

- **Periodic functions**
 \[f(x + T) = f(x) \]
 \(T \): period.

- **Complex sinusoids**
 - Real valued sinusoids: \(\sin(x), \cos(x) \)
 - Complex valued sinusoids: \(\cos(x) + i\sin(x) = e^{ix} \), with \(i = \sqrt{-1} \)
Fourier Series

Goal
Decompose "nice" nice periodic continuous functions as sums of complex valued sinusoids.
Fourier Series

Goal

Decompose ”nice” nice periodic continuous functions as sums of complex valued sinusoids.

Periodic functions

- $f(x + T) = f(x)$
- T: period.

Complex sinusoid

- Real valued sinusoids: $\sin(x)$, $\cos(x)$
- Complex valued sinusoids: $\cos(x) + i\sin(x) = e^{ix}$, with $i = \sqrt{-1}$
Fourier Series

Goal
Decompose ”nice” nice periodic continuous functions as sums of complex valued sinusoids.

Periodic functions

- $f(x + T) = f(x)$
- T: period.

Complex sinusoid
Fourier Series

Goal
Decompose "nice" nice periodic continuous functions as sums of complex valued sinusoids.

Periodic functions
- \(f(x + T) = f(x) \)
- \(T \): period.

Complex sinusoid
- Real valued sinusoids: \(\sin(x), \cos(x) \)
Fourier Series

Goal
Decompose ”nice” nice periodic continuous functions as sums of complex valued sinusoids.

Periodic functions

- \(f(x + T) = f(x) \)
- \(T \): period.

Complex sinusoid

- Real valued sinusoids: \(\sin(x), \cos(x) \)
- Complex valued sinusoids: \(\cos(x) + i\sin(x) = e^{ix} \), with \(i = \sqrt{-1} \)
Series expansion

Represent periodic continuous functions as:

\[f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t) \]

with \(\omega_0 = 2\pi/T \) and \(f(t + T) = f(t) \).
Series expansion

Represent periodic continuous functions as:

\[f(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t) \]

with \(\omega_0 = 2\pi/T \) and \(f(t + T) = f(t) \).

\[a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt \]
\[a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(n\omega_0 t) dt \]
\[b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(n\omega_0 t) dt \]
In general:

Use

\[
\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}, \quad \sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}
\]
In general:

Use

\[\cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2}, \quad \sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j} \]

To arrive at:

\[f(t) = \sum_{n=-\infty}^{\infty} c_n e^{j n \omega_0 t} \]

with

\[c_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-j n \omega_0 t} dt. \]
Vector space view

Consider the vector space of square integrable functions over period T:

$$\int_{-T/2}^{T/2} |f(t)|^2 dt < \infty$$
Vector space view

Consider the vector space of square integrable functions over period T:

$$\int_{-T/2}^{T/2} |f(t)|^2 dt < \infty$$

Basis

The set $\frac{1}{\sqrt{T}} e^{j\omega_0 nt}$ forms a complete orthonormal system for representing periodic functions.
Vector space view

Consider the vector space of square integrable functions over period T:

$$\int_{-T/2}^{T/2} |f(t)|^2 dt < \infty$$

Basis
The set $\frac{1}{\sqrt{T}} e^{j\omega_0 t}$ forms a complete orthonormal system for representing periodic functions.

Representation with orthonormal basis

$$f(t) = \sum_{n=-\infty}^{\infty} \langle f(t), \phi_n(t) \rangle \phi_n^*(t)$$

with $\langle f(t), \phi_n(t) \rangle = \int_{-T/2}^{T/2} \phi_n^*(t) f(t) dt$ and $\phi_n(t) = e^{-jn\omega_0 t}$.
Example:
Example:

![Signal Waveform](image1.png)

![Frequency Content](image2.png)
Example:
Example:
Example:
Example:
Example:

![Graph](image.png)
Example:

Graph 1:
- Signal
- Reconstruction

Graph 2:
- Signal
- Imaginary

Frequency content
- 200
- 100
- 0

Graph 3:
- Frequency
- 0
- 2
- 4
- 6
- 8
- 10
- 12
- 14
- 16
- 18
- 20
Example:
Example:

![Graphs showing Fourier analysis and frequency content](image-url)

- **Motivation**
- **Orthonormal expansions**
- **Discrete Fourier Transform**
- **Properties**
- **Fourier Series**
- **Example**
- **Convergence**
- **Discrete Time FT**
- **Summary**
Example:

![Signal and Reconstruction](image1)

![Signal and Imaginary](image2)

Frequency content

![Frequency content](image3)
Example:
Example:
Example:

- **Signal**: Represents the original signal.
- **Reconstruction**: The reconstructed signal from Fourier analysis.

Frequency Content

- The frequency content graph illustrates the frequency components of the signal.
- The peaks correspond to the significant frequencies present in the signal.
Introduction to Fourier Analysis

Intro.

Biomedical Imaging and Image Analysis

Motivation

Orthonormal expansions

Discrete Fourier Transform

Properties

Fourier Series

Example

Convergence

Discrete Time FT

Fourier Transform

Summary

Example:
Example:

- **Signal**
- **Reconstruction**

Frequency content
Example:

[Graphs and diagrams showing Fourier analysis examples, including frequency content graphs and waveforms.]
Example:

- **Signal and Reconstruction:**
 - **Signal**
 - **Reconstruction**

- **Frequency Content**
 - Frequency spectrum showing peaks at certain frequencies.
Example:

![Example](image)

Frequency content
Example:
Example:
Notes about convergence

What does it mean $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$?
Notes about convergence

What does it mean \(f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t} \)?

Let \(f^N(t) = \sum_{n=-N}^{N} c_n e^{jn\omega_0 t} \):
Notes about convergence

What does it mean $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$?

Let $f^N(t) = \sum_{n=-N}^{N} c_n e^{jn\omega_0 t}$:

- Pointwise convergence: $\lim_{N \to \infty} f^N(t) = f(t)$.
Notes about convergence

What does it mean \(f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t} \)?

Let \(f^N(t) = \sum_{n=-N}^{N} c_n e^{jn\omega_0 t} \):

- Pointwise convergence: \(\lim_{N \to \infty} f^N(t) = f(t) \).
- Uniform convergence: Pointwise and given \(\epsilon > 0 \), there exists \(N \) s.t. \(|f^N(t) - f(t)| < \epsilon \)
Notes about convergence

What does it mean $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$?

Let $f^N(t) = \sum_{n=-N}^{N} c_n e^{jn\omega_0 t}$:

- Pointwise convergence: $\lim_{N \to \infty} f^N(t) = f(t)$.
- Uniform convergence: Pointwise and given $\epsilon > 0$, there exists N s.t. $|f^N(t) - f(t)| < \epsilon$
- Mean square convergence:
 $$\lim_{N \to \infty} \sqrt{\int_{-T/2}^{T/2} |f(t) - f^N(t)|^2} = 0$$
Notes about convergence

What does it mean $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$?

Let $f^N(t) = \sum_{n=-N}^{N} c_n e^{jn\omega_0 t}$:

- Pointwise convergence: $\lim_{N \to \infty} f^N(t) = f(t)$.
- Uniform convergence: Pointwise and given $\epsilon > 0$, there exists N s.t. $|f^N(t) - f(t)| < \epsilon$
- Mean square convergence:
\[
\lim_{N \to \infty} \sqrt{\int_{-T/2}^{T/2} |f(t) - f^N(t)|^2} = 0
\]

Fourier Series
Notes about convergence

What does it mean \(f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t} \)?

Let \(f^N(t) = \sum_{n=-N}^{N} c_n e^{jn\omega_0 t} \):

- **Pointwise convergence**: \(\lim_{N \to \infty} f^N(t) = f(t) \).
- **Uniform convergence**: Pointwise and given \(\epsilon > 0 \), there exists \(N \) s.t. \(|f^N(t) - f(t)| < \epsilon \)
- **Mean square convergence**:\
 \[
 \lim_{N \to \infty} \sqrt{\int_{-T/2}^{T/2} |f(t) - f^N(t)|^2} = 0
 \]

Fourier Series

- If \(f(t) \) continuous: series converges uniformly.
Notes about convergence

What does it mean \(f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t} \)?

Let \(f^N(t) = \sum_{n=-N}^{N} c_n e^{jn\omega_0 t} \):

- Pointwise convergence: \(\lim_{N \to \infty} f^N(t) = f(t) \).
- Uniform convergence: Pointwise and given \(\epsilon > 0 \), there exists \(N \) s.t. \(|f^N(t) - f(t)| < \epsilon \)
- Mean square convergence:
 \[
 \lim_{N \to \infty} \sqrt{\int_{-T/2}^{T/2} |f(t) - f^N(t)|^2} = 0
 \]

Fourier Series

- If \(f(t) \) continuous: series converges uniformly.
- If \(f(t) \) discontinuous: mean square convergence.
Discrete Time Fourier Transform

Consider the vector space of infinite square summable sequences $s[n]$, $n = \cdots, -1, 0, 1, 2, \cdots$.
Discrete Time Fourier Transform

Consider the vector space of infinite square summable sequences \(s[n], n = \cdots, -1, 0, 1, 2, \cdots \).

\[
\hat{s}(\omega) = \sum_{n=-\infty}^{\infty} s[n]e^{-jn\omega}
\]
Discrete Time Fourier Transform

Consider the vector space of infinite square summable sequences \(s[n], \) \(n = \cdots, -1, 0, 1, 2, \cdots \).

DTFT

\[
\hat{s}(\omega) = \sum_{n=-\infty}^{\infty} s[n] e^{-jn\omega}
\]

Inverse

\[
s[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{s}(\omega) e^{j\omega n} d\omega
\]
Properties

Convolution

Let $c[n] = \sum_{k=-\infty}^{\infty} s[k] h[n-k]$. Then $\hat{c}[k] = \hat{s}[k] \hat{h}[k]$.

Parseval's formula:

$\sum_{n=-\infty}^{\infty} f[n] g[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{f}(\omega) \hat{g}(\omega) d\omega$

Energy conservation: Plancherel formula:

$\|s\|_2^2 = \sum_{n=-\infty}^{\infty} |s[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\hat{s}(\omega)|^2 d\omega$
Properties

Convolution

Let \(c[n] = \sum_{k=-\infty}^{\infty} s[k] h[n - k] \). Then \(\hat{c}[k] = \hat{s}[k] \hat{h}[k] \)
Properties

Convolution
Let \(c[n] = \sum_{k=-\infty}^{\infty} s[k] h[n - k] \). Then \(\hat{c}[k] = \hat{s}[k] \hat{h}[k] \)

Parseval’s formula:

\[
\sum_{n=-\infty}^{\infty} f^*[n] g[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{f}^*(\omega) \hat{g}(\omega) d\omega
\]
Properties

Convolution
Let \(c[n] = \sum_{k=-\infty}^{\infty} s[k] h[n - k] \). Then \(\hat{c}[k] = \hat{s}[k] \hat{h}[k] \)

Parseval’s formula:
\[
\sum_{n=-\infty}^{\infty} f^*[n] g[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{f}^*(\omega) \hat{g}(\omega) d\omega
\]

Energy conservation: Plancherel formula:
\[
\|s\|^2 = \sum_{n=-\infty}^{\infty} |s[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\hat{s}(\omega)|^2 d\omega
\]
Notes:

In discrete time case (infinite sequences) the Fourier Transform is interpreted as a frequency response. That is, how much of a contribution from a particular sequence \(e^{j\omega k} \) there is in the time series: \(\omega \) is the frequency.
In discrete time case (infinite sequences) the Fourier Transform is interpreted as a frequency response. That is, how much of a contribution from a particular sequence $e^{j\omega k}$ there is in the time series: ω is the frequency.

Notation
Sometimes the DTFT of sequence s is denoted $S(e^{j\omega})$ due to connections to the Z-transform.
Notes:

In discrete time case (infinite sequences) the Fourier Transform is interpreted as a frequency response. That is, how much of a contribution from a particular sequence $e^{j\omega k}$ there is in the time series: ω is the frequency.

Notation

Sometimes the DTFT of sequence s is denoted $S(e^{j\omega})$ due to connections to the Z-transform.

N-D

Extend to 2D and 3D, and beyond, by applying the operations sequentially over each dimension.
Fourier Transform

Goal
Represent a "nice" continuous function $f(t)$ with complex sinusoids $e^{j\omega t}$.

\[
 f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{j\omega t} d\omega.
\]

\[
 \hat{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt = \langle f, e^{j\omega t} \rangle
\]
Fourier Transform

Goal

Represent a "nice" continuous function $f(t)$ with complex sinusoids $e^{j\omega t}$.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{j\omega t} d\omega.$$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt = \langle f, e^{j\omega t} \rangle$$

Convergence issues
Fourier Transform

Goal

Represent a "nice" continuous function $f(t)$ with complex sinusoids $e^{j\omega t}$.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{j\omega t} d\omega.$$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt = \langle f, e^{j\omega t} \rangle$$

Convergence issues

- If $f(t)$ continuous, formula above is exact.
Fourier Transform

Goal
Represent a "nice" continuous function $f(t)$ with complex sinusoids $e^{j\omega t}$.

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{j\omega t} d\omega.$$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt = \langle f, e^{j\omega t} \rangle$$

Convergence issues
- If $f(t)$ continuous, formula above is exact.
- If not, the formulas hold in the least squares sense.
Properties

Convolution

- \(g = h \ast f = \int_{-\infty}^{\infty} f(t - u)h(u)du \)
- Then \(\hat{g}(\omega) = \hat{h}(\omega)\hat{f}(\omega) \)
Properties

Convolution

- $g = h \ast f = \int_{-\infty}^{\infty} f(t - u)h(u)du$

- Then $\hat{g}(\omega) = \hat{h}(\omega)\hat{f}(\omega)$

Parseval

\[
\langle f, h \rangle = \frac{1}{2\pi} \langle \hat{f}, \hat{h} \rangle.
\]

Also implies Plancherel.
In two dimensions

As before, perform it along each dimension individually.

\[
\hat{f}(\omega_x, \omega_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{j(\omega_x x + \omega_y y)} \, dx \, dy.
\]

\[
f(x, y) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(\omega_x, \omega_y) e^{j(\omega_x x + \omega_y y)} \, d\omega_x \, d\omega_y.
\]
Properties

Table: Fourier transform properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Function</th>
<th>Fourier Transform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolution</td>
<td>$f(t)$</td>
<td>$\hat{f}(\omega)$</td>
</tr>
<tr>
<td>Multiplication</td>
<td>$f_1(t)f_2(t)$</td>
<td>$\frac{1}{2\pi} \hat{f}_1(\omega) \hat{f}_2(\omega)$</td>
</tr>
<tr>
<td>Translation</td>
<td>$f(t - t_0)$</td>
<td>$e^{-jt_0\omega} \hat{f}(\omega)$</td>
</tr>
<tr>
<td>Modulation</td>
<td>$e^{j\omega_0 t} f(t)$</td>
<td>$\hat{f}(\omega - \omega_0)$</td>
</tr>
<tr>
<td>Scaling</td>
<td>$f\left(\frac{t}{s}\right)$</td>
<td>$</td>
</tr>
<tr>
<td>Time derivatives</td>
<td>f^p</td>
<td>$(j\omega)^p \hat{f}(\omega)$</td>
</tr>
<tr>
<td>Frequency derivatives</td>
<td>$(-jt)^p f(t)$</td>
<td>$\hat{f}^{(p)}(\omega)$</td>
</tr>
</tbody>
</table>

Note: most of these can be proved with a change of variable in the Fourier integral.
Summary

One can use complex sinusoids $e^{j\omega n}$ or $e^{k\omega t}$ to represent, explain signals.
Summary

One can use complex sinusoids $e^{j\omega n}$ or $e^{j\omega t}$ to represent, explain signals.

- Discrete Fourier Transform (DFT): finite length discrete signal.
Summary

One can use complex sinusoids $e^{j\omega n}$ or $e^{k\omega t}$ to represent, explain signals.

- Discrete Fourier Transform (DFT): finite length discrete signal.
- Discrete Time Fourier Transform (DTFT): infinite discrete signals, sequences.
Summary

One can use complex sinusoids $e^{j\omega n}$ or $e^{j\omega t}$ to represent, explain signals.

- Discrete Fourier Transform (DFT): finite length discrete signal.
- Discrete Time Fourier Transform (DTFT): infinite discrete signals, sequences.
- Fourier Series: periodic functions.
Summary

One can use complex sinusoids $e^{j\omega n}$ or $e^{j\omega t}$ to represent, explain signals.

- Discrete Fourier Transform (DFT): finite length discrete signal.
- Discrete Time Fourier Transform (DTFT): infinite discrete signals, sequences.
- Fourier Series: periodic functions.
- Fourier Transform (FT). Functions.
Summary

These have important properties.

- Convolution (filtering).
- Parseval (inner product).
- Plancherel (energy).
- Linearity.
- Many others ...

We will see many applications of these concepts, including in image acquisition, as well as processing.
Summary

These have important properties.
Summary

These have important properties.

- Convolution (filtering).
Summary

These have important properties.
► Convolution (filtering).
► Parseval (inner product).
Summary

These have important properties.

- Convolution (filtering).
- Parseval (inner product).
- Plancherel (energy).
Summary

These have important properties.

- Convolution (filtering).
- Parseval (inner product).
- Plancherel (energy).
- Linearity.
Summary

These have important properties.

- Convolution (filtering).
- Parseval (inner product).
- Plancherel (energy).
- Linearity.
- Many others ...
Summary

These have important properties.

- Convolution (filtering).
- Parseval (inner product).
- Plancherel (energy).
- Linearity.
- Many others ...

We will see many applications of these concepts, including in image acquisition, as well as processing.